The discriminant

The discriminant of a quadratic expression $ax^2 + bx + c$ is the value $b^2 - 4ac$. You can use the discriminant to work out whether a quadratic equation has any real roots or real solutions. There are three possible conditions for the discriminant:

$$b^2-4ac>0$$

$$b^2-4ac=0$$

$$b^2-4ac<0$$

Discriminant =
$$4^2 - 4 \times 1 \times 2$$

= $8 > 0$

Discriminant =
$$(-6)^2 - 4 \times 1 \times 9$$

= 0

Discriminant = $(-1)^2 - 4 \times 2 \times 3$ = -23 < 0

Two distinct real roots

Two equal real roots

No real roots

Worked example

The equation $x^2 + 4qx + 2q = 0$, where q is a non-zero constant, has equal roots.

Find the value of q.

$$b^{2} - 4ac = 0$$

$$(4q)^{2} - 4 \times 1 \times (2q) = 0$$

$$16q^{2} - 8q = 0$$

$$q(16q - 8) = 0$$

$$16q - 8 = 0 \text{ so } q = \frac{1}{2}$$

Follow these steps:

- 1. Work out the values of a, b and c: a = 1, b = 4q and c = 2q.
- 2. Find an expression for the discriminant $(b^2 - 4ac)$ in terms of q.
- 3. Set the discriminant equal to 0, because there are two equal roots.
- 4. Solve this new equation to work out two possible values for q.

You are told that q is non-zero, so the correct solution is $q = \frac{1}{2}$.

Problem solved!

The equation must be in the form $ax^2 + bx + c = 0$ before you work out the values of a, b and c. Always write down the condition for the discriminant that you are using, and use brackets when you substitute.

You will need to use problem-solving skills throughout your exam - be prepared!

Worked example

The equation $2x^2 - kx + 6 = k$ has no real solutions for x. Show that $k^2 + 8k - 48 < 0$ (3 marks)

$$2x^{2} - kx + 6 - k = 0$$

$$b^{2} - 4ac < 0$$

$$(-k)^{2} - 4 \times 2 \times (6 - k) < 0$$

$$k^{2} + 8k - 48 < 0$$

New try this

- 1 Find the value of the discriminant of $3x^2 - 2x - 5$
- 2 The equation $px^2 + 2x 3 = 0$, where p is a constant, has equal roots. Find the value of p. (3 marks)

The expression $(k + p)^2$ must always be greater than or equal to zero.

- (a) Find the discriminant of f(x) in (2 marks) terms of k.
- (b) Show that the discriminant can be written in the form $(k + p)^2 + q$, where p and q are integers to be found. (2 marks)
- (c) Show that, for all values of k, the equation f(x) = 0 has distinct real roots. (2 marks)

7. The discriminant

1
$$(-2)^2 - 4 \times 3 \times (-5) = 64$$

2
$$b^2 - 4ac = 0$$

 $2^2 - 4p \times (-3) = 0$
 $4 + 12p = 0$
 $p = -\frac{1}{3}$

3 (a)
$$(k+5)^2 - 4 \times 1 \times 2k = k^2 + 10k + 25 - 8k$$

= $k^2 + 2k + 25$

(b)
$$k^2 + 2k + 25 = (k+1)^2 - 1^2 + 25$$

= $(k+1)^2 + 24$
 $p = 1, q = 24$

(c) $(k+1)^2 \ge 0$ for all k, so discriminant > 0 for all k, so f(x) = 0 has distinct real roots.