Trigonometry in Right-Angled Triangles

A LEVEL LINKS

Scheme of work: Ch3-1. Trigonometric ratios and graphs

Key points

- In a right-angled triangle:
 - the side opposite the right angle is called the hypotenuse
 - the side opposite the angle θ is called the opposite
 - the side next to the angle θ is called the adjacent.

- In a right-angled triangle:
 - the ratio of the opposite side to the hypotenuse is the sine of angle θ , $\sin \theta = \frac{\text{opp}}{\text{hyp}}$
 - the ratio of the adjacent side to the hypotenuse is the cosine of angle θ , $\cos \theta = \frac{\text{adj}}{\text{hyp}}$
 - the ratio of the opposite side to the adjacent side is the tangent of angle θ , $\tan \theta = \frac{\text{opp}}{\text{adj}}$
- If the lengths of two sides of a right-angled triangle are given, you can find a missing angle using the inverse trigonometric functions: \sin^{-1} , \cos^{-1} , \tan^{-1} .
- The sine, cosine and tangent of some angles may be written exactly.

	0	30 °	45 °	60 °	90 °
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	

Examples

Example 1

Calculate the length of side *x*. Give your answer correct to 3 significant figures.

Example 2Calculate the size of angle x.Give your answer correct to 3 significant figures.

Example 3 Calculate the exact size of angle *x*.

Practice

1 Calculate the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.

2 Calculate the size of angle *x* in each triangle. Give your answers correct to 1 decimal place.

3 Work out the height of the isosceles triangle. Give your answer correct to 3 significant figures.

Hint:

Split the triangle into two right-angled triangles.

4 Calculate the size of angle θ . Give your answer correct to 1 decimal place.

Hint:

First work out the length of the common side to both triangles, leaving your answer in surd form.

5 Find the exact value of x in each triangle.

Answers

1	a d	6.49 cm 74.3 mm	b e	6.93 cm 7.39 cm	c f	2.80 cm 6.07 cm		
2	a	36.9°	b	57.1°	c	47.0°	d	38.7°
3	5.7	1 cm						
4	20.	4°						
5	a	45°	b	1 cm	с	30°	d	$\sqrt{3}$ cm

