Trigonometry in Right-Angled Triangles

A LEVEL LINKS

Scheme of work: Ch3-1. Trigonometric ratios and graphs

Key points

- In a right-angled triangle:
- the side opposite the right angle is called the hypotenuse
- the side opposite the angle θ is called the opposite
- the side next to the angle θ is called the adjacent.

adjacent
- In a right-angled triangle:
- the ratio of the opposite side to the hypotenuse is the sine of angle $\theta, \sin \theta=\frac{\mathrm{opp}}{\mathrm{hyp}}$
- the ratio of the adjacent side to the hypotenuse is the cosine of angle $\theta, \cos \theta=\frac{\text { adj }}{\text { hyp }}$
- the ratio of the opposite side to the adjacent side is the tangent of angle $\theta, \tan \theta=\frac{\mathrm{opp}}{\operatorname{adj}}$
- If the lengths of two sides of a right-angled triangle are given, you can find a missing angle using the inverse trigonometric functions: $\sin ^{-1}, \cos ^{-1}, \tan ^{-1}$.
- The sine, cosine and tangent of some angles may be written exactly.

	0	30 ${ }^{\circ}$	45°	60°	90°
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
\cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	

Examples

Example 1 Calculate the length of side x.
Give your answer correct to 3 significant figures.

$\cos \theta=\frac{\text { adj }}{\text { hyp }}$
$\cos 25^{\circ}=\frac{6}{x}$
$x=\frac{6}{\cos 25^{\circ}}$
$x=6.620267$ 5...
$x=6.62 \mathrm{~cm}$
1 Always start by labelling the sides.

2 You are given the adjacent and the hypotenuse so use the cosine ratio.

3 Substitute the sides and angle into the cosine ratio.

4 Rearrange to make x the subject.
5 Use your calculator to work out $6 \div \cos 25^{\circ}$.
6 Round your answer to 3 significant figures and write the units in your answer.

Example 2 Calculate the size of angle x.
Give your answer correct to 3 significant figures.

$\tan \theta=\frac{\text { opp }}{\text { adj }}$
$\tan x=\frac{3}{4.5}$
$x=\tan ^{-1}\left(\frac{3}{4.5}\right)$
$x=33.6900675$...
$x=33.7^{\circ}$

1 Always start by labelling the sides.

2 You are given the opposite and the adjacent so use the tangent ratio.
3 Substitute the sides and angle into the tangent ratio.
4 Use $\tan ^{-1}$ to find the angle.
5 Use your calculator to work out $\tan ^{-1}(3 \div 4.5)$.

6 Round your answer to 3 significant figures and write the units in your answer.

Example 3 Calculate the exact size of angle x.

$\tan \theta=\frac{\text { opp }}{\text { adj }}$
$\tan x=\frac{\sqrt{3}}{3}$
$x=30^{\circ}$
2 You are given the opposite and the adjacent so use the tangent ratio.

3 Substitute the sides and angle into the tangent ratio.
4 Use the table from the key points to find the angle.

Practice

1 Calculate the length of the unknown side in each triangle.
Give your answers correct to 3 significant figures.
a

c

e

b

d

f

edexcel

2 Calculate the size of angle x in each triangle.
Give your answers correct to 1 decimal place.
a

b

c

3 Work out the height of the isosceles triangle. Give your answer correct to 3 significant figures.

Hint:

Split the triangle into two right-angled triangles.

4 Calculate the size of angle θ.
Give your answer correct to 1 decimal place.

Hint:

First work out the length of the common side to both triangles, leaving your answer in surd form.

5 Find the exact value of x in each triangle.
a

c

b

d

edexcel :\%

Answers

