Level 3 Certificate MATHEMATICAL STUDIES 1350/1

Paper 1

Mark scheme

June 2020
Version: 1.0 Final

MARK SCHEME - LEVEL 3 MATHEMATICAL STUDIES - 1350/1 - JUNE 2020

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2020 AQA and its licensors. All rights reserved.

\mathbf{Q}	Answer	Mark	Comments	
$\mathbf{1}$	secondary data	B1	must be the only box ticked	
	Additional Guidance			
	multiple boxes ticked is zero marks			
	accept a single cross instead of a tick			

	When several statements are given award B1 for a correct statement if the others are non-contradictory	B1

Q	Answer			
2(b)	Quota (sampling)	Mark	Comments	
	Additional Guidance			

Q	Answer	Mark	Comments	
2(c)	Stratified (sampling) and The number from each year group in the sample are in proportion to the number in each year group	B2	oe description B1 stratified stated with no description or incorrect description or no or incorrect sampling method named but correct description of stratified sampling	
	Additional Guidance			
	Ignore incorrect spelling of stratified if unambiguous			
	Stratified which means taking a \% from each group which is the same as the \% of the group in the whole school			B2
	Stratified. Based on the amount of students per year group work out year group size/total population x sample size			B2
	Stratified and works out the correct number for each year group based on a stratified sample of say 100			B2
	Stratified. The sample is taken so that it is representative of the population			B2
	Stratified. Each groups sample size is representative of the population			B2
	Stratified. The ratios of each year group would be actual representation of the whole population			B2

Q	Answer	Mark	Comments
3(a)	3	B1	

Q	Answer	Mark	IQR for the female sprinters $=2.2$ (sec) or range for female sprinters $=3.2$ (sec) or SD for the female sprinters 1.05(...) or 1.08(...) or 1.1	B1

Q	Answer	Mark	Comments
4	Alternative method 1		
	1850×1.23 or (\$)2275.5	M1	
	their 2275.5-1625 or 650.5	M1dep	dollars left
	their $650.5 \div 1.23$ or (£)528.(...)	M1	pounds left $\begin{aligned} & 1850-(1625 \div 1.23) \text { implies M3 } \\ & 1625 \div 1.23 \text { implies M2 } \end{aligned}$
	(1000 - their 528.(...)) $\times 24.12$	M1	
	[11360,11365]	A1	
	Alternative method 2		
	1850×1.23 or (\$)2275.5	M1	
	their 2275.5-1625 or 650.5	M1dep	dollars left
	their 650.5×19.61 or 12756.(...) (pesos)	M1	pesos left
	$(1000 \times 24.12)-$ their 12756.(...)	M1	
	[11360,11365]	A1	
	Alternative method 3		
	1850×1.23 or (\$)2275.5	M1	
	their 2275.5-1625 or 650.5	M1dep	dollars left
	1000×1.23 - their 650.5 or 579.5	M1	pounds needed
	their 579.5×19.61	M1	
	[11360,11365]	A1	

Q	Answer	Mark	Comments
5	Alternative method 1		
	Makes assumption about population of the UK	B1	accept 60 million to 75 million
	Makes assumption about proportion or number of 15 -year-olds in the UK (P) or Makes assumption about proportion or number of 11 to $16 / 18$ year olds in the UK (P) or Makes an assumption about the proportion or number of children in the uk	B1	1% to 2% of their population accept 0.6 million to 1.25 million 5% to 10% of their population or 3 million to 7.5 million 15% to 25% of their population or 9 million to 18.75 million
	Makes assumption about average number of 15 -year-old students per school (S) or Makes assumption about average number of students per school (S)	B1	accept 100 to 300 accept 500 to 1500
	Total number of 15 -year-olds :Number of 15 year-old students per school or Total number of 11 to $16 / 18$ year olds \div Number of students per school their $\mathrm{P} \div$ their S	M1	
	Accurate answer for their values	A1	must be an integer

Q	Answer	Mark	Comments	
6(a)	cf values calculated $1,8,21,26,30$	B1	in table or implied by height	
	plotted at upper class values	B1ft	ft their cf values if increasing	
	heights correct and joined with curve or straight lines	B1ft	ft their cf values if increasin if graph extended to the left consistent spacing for of of graph must start at $(30,0)$ I must end at cf of 30	must be eg correct $(35,1)$
	Additional Guidance			
	Consistent spacing is required for any part of the graph stating before the first plotted point eg If correct upper-class boundaries are used then it must start at $(30,0)$ or $(35,1)$ If midpoints are used then the graph must start at $(27.5,0)$ or $(32.5,1)$			

Q	Answer	Mark	Comments	
6(b)	Alternative method 1			
	Vertical line from $d=48$ to their increasing curve	M1	implied by mark at correct point on curve or vertical axis	
	correct value from their increasing curve	A1		
	Alternative method 2			
	$1+7+13+\left(\frac{3}{5} \times 5\right) \text { or } 24$ or $4+\left(\frac{2}{5} \times 5\right)$	M1		
	6	A1		
	Additional Guidance			
	Answer 24			M1
	Answer 6 with no working			M1A1

Q	Answer	Mark	Comments
6(c)	$\begin{aligned} & \frac{\text { their } 6}{30} \\ & \text { or } 0.2 \text { or } 20 \% \end{aligned}$	M1	oe ft their (b) or correct
	$\left(\frac{2}{5} \times 5\right) 13$ or 2×3 or 6 or $10 \times 0.2 \text { or } 2$	M1	oe check histogram for values
	$2 \times 3+10 \times 0.2$ or $6+2 \text { or } 8$	M1dep	dep on 2nd M1
	$\frac{\text { their } 8}{50}$ or 0.16 or 16%	M1	oe
	$\frac{30}{150}$ and $\frac{24}{150}$ and Kerry or 20% and 16% and Kerry or 0.2 and 0.16 and Kerry	A1ft	oe any equivalent fractions with the same denominator ft their (b) or correct

Q	Answer	Mark	Comments
7(a)	Makes an assumption about average attendance per day eg 38000	B1	allow 30000 to 40000
	Makes an assumption about the proportion of people buying strawberries eg 35%, $1 / 3$	B1	allow 25% to 45%
	their attendance per day \times their proportion $\times 13$ eg $38000 \times 0.35 \times 13$	M1	
	Makes an assumption about the number of strawberries per portion	B1	allow between 8 and 12 strawberries per portion
	Makes an assumption about the average mass per strawberry eg 15g	B1	allow mass from 12 g to 16 g
	calculates mass per portion eg their 15×10 or 150	M1	
	multiplies their total portions by mass per portion eg their 172900×150 or 25935000 g	M1	may convert to kg here eg 25935 kg any number of days including one may be used
	converts to tonnes eg their $25935000 \div 1000 \div 1000$ or 25.935	M1	
	26	A1ft	answers must be rounded or truncated to integer or 1dp ft their assumed values must have used 13 days

| Q | Answer | Correct comment eg
 Attendance figures may be higher so
 more strawberries would be needed
 or
 the percentage buying strawberries
 may be lower than I assumed so the
 number of tonnes would decrease
 or
 the number of strawberries per portion
 may be higher so my answer should
 be higher
 or
 the weight of strawberries per portion
 may be less than I assumed so the
 tonnes would be lower | B1 |
| :---: | :--- | :--- | :--- | :--- |

Q	Answer	Mark	Comments
8	$4.2 \div 100$ or 0.042 seen	M1	
	$\begin{aligned} & 190000 \times(\text { their } 0.042 \div 12) \\ & \text { or } \\ & 190000 \times 0.0035 \\ & \text { or } 665 \end{aligned}$	M1	oe their 0.042 must include the digits 42
	$1-\left(1+\frac{\text { their } 0.042}{12}\right)^{-12 \times 25}$ or $1-1.0035^{-300}$ or $0.649(\ldots)$	M1	oe condone one substitution error
	their $665 \div$ their $0.649(\ldots)$ or [1023,1024]	M1dep	dep on 2nd and 3rd M1
	$\begin{aligned} & 3800 \times 0.3 \text { or } 1140 \\ & \text { or } \\ & \text { their }[1023,1024] \div 3800 \times 100 \\ & \text { or } 26 .(9 \ldots) \% \text { or } 27 \% \\ & \text { or } \\ & \text { their }[1023,1024] \div 0.3 \text { or } 3413 \end{aligned}$	M1	
	[1023,1024] and 1140 and Yes or 26.(9...) \% or 27\% and Yes or 3413 and Yes	A1	

Q	Answer	Mark	Comments
9(b)	Alternative method 1		
	$\begin{aligned} & 84000-12500-37500 \\ & \text { or } \\ & 84000-50000 \text { or } 34000 \end{aligned}$	M1	may be implied
	their 34000×0.4 or 13600 and 37500×0.2 or 7500	M1dep	oe higher rate tax and standard rate tax 21100 total tax implies M2
	$\begin{aligned} & (84000-50000) \times 0.02 \\ & \text { or } \\ & \text { their } 34000 \times 0.02 \text { or } 680 \end{aligned}$	M1	oe higher rate NI implies 1st M1
	$(50000-8632) \times 0.12$ or 4964.16	M1	oe basic rate NI 5644.16 total NI implies 1st, 3rd, and 4th M1
	their 13600 + their 7500 + their 4964.16 + their 680 or 26744.16	M1	totals all deductions must include standard and higher rate for both tax and NI 26744.16 implies M6
	84000 - their 26744.16	M1	their 26744.16 must include at least one amount of tax and at least one amount of NI
	57255.(84) or 57256	A1	Paul's household net pay per year implied by correct final answer
	```(32095.84 \(\times 2\) ) - their 57255 .(84) or [6935, 6937] or (32095.84 \(\times 2\) ) and their 57255 .(84)+ 7000 or 64191.68 and 64255.84 or \((32095.84 \times 2)-7000\) or 57191.68```	M1	




