Disguised Quadratics

Functions and roots

You need to be able to use function notation and to be able to solve quadratic equations in a function of the unknown. Here is an example:

You don't know how to solve a quartic equation like this, but if you write $u = x^2$ then $u^2 = (x^2)^2 = x^4$.

$$x^{4} - 7x^{2} + 12 = 0$$
$$y^{2} - 7y + 12 = 0$$

Substitute $u = x^2$ to form a quadratic equation in u.

$$(\upsilon-3)(\upsilon-4)=0$$

You could also write

$$-x^2 = 3$$

$$= 4 \frac{100 \text{ could also}}{(x^2)^2 - 7(x^2) + 1}$$

solutions.

$$x = \pm \sqrt{3}$$

$$x = \pm 2$$

$$(x^2)^2 - 7(x^2) + 12 = 0$$
$$(x^2 - 3)(x^2 - 4) = 0$$

Worked example

Solve the equation $3x + \sqrt{x} - 2 = 0$

(4 marks)

Let
$$u = \sqrt{x}$$

$$3x + \sqrt{x} - 2 = 0$$

$$3u^2 + u - 2 = 0$$

$$(3u - 2)(u + 1) = 0$$

$$3u - 2 = 0$$
 or $u + 1 = 0$
 $u = \frac{2}{3}$ or $u = -1$

Using
$$u = \sqrt{x}$$

$$x = u^2$$

$$x = \frac{4}{9}$$

Problem solved!

 $x = (\sqrt{x})^2$ so you could write the equation as:

$$3(\sqrt{x})^2 + \sqrt{x} - 2 = 0$$

This is a quadratic equation in \sqrt{x} . The safest way to solve equations like this is to use the substitution $u = \sqrt{x}$.

 \sqrt{x} is the positive square root of x, so it can only take positive values. You need to ignore the solution u = -1.

You will need to use problem-solving skills throughout your exam - be prepared!

Domain

Functions will usually be defined for a given domain. This is the set of values that can be used as the input to the function. The domain of this function is all the positive real numbers (\mathbb{R}) .

$$g(x) = 2x^2 - 5x - 3, x \in \mathbb{R}, x > 0$$

The roots of a function, g(x), are the values of x for which g(x) = 0. You might need to consider the domain when finding the roots of a function.

Worked example

 $g(x) = 2x^2 - 5x - 3, x \in \mathbb{R}, x > 0$

Show that g(x) has exactly one root and find its value. (3 marks)

Set q(x) = 0 to find roots:

$$2x^2 - 5x - 3 = 0$$

$$(2x + 1)(x - 3) = 0$$

$$x = \frac{1}{2}$$
 or $x = 3$

The domain is x > 0, so $x = -\frac{1}{2}$ is not a root. The only root is x = 3.

Now try this

1 Solve

(a)
$$x^4 - 3x^2 - 4 = 0$$

(4 marks)

(b)
$$8x^6 + 7x^3 - 1 = 0$$

(4 marks)

(c)
$$x + 10 = 7\sqrt{x}$$

(4 marks)

2 Solve the equation $4\sqrt{x} + x = 3$, giving your answer in the form $a - b\sqrt{7}$, where a and b are integers to be found. (5 marks) 3 $f(x) = x^4 - 4x^2 - 5, x \in \mathbb{R}, x < 0$

Show that f(x) has only one root and (4 marks) determine its exact value.

Look at the domain of the function carefully. $x^4 - 4x^2 - 5 = 0$ has two real solutions but only one of them is a root of f(x).

5. Functions and roots

1 (a)
$$x^4 - 3x^2 - 4 = 0$$

 $(x^2)^2 - 3x^2 - 4 = 0$
 $(x^2 + 1)(x^2 - 4) = 0$
 $x^2 = 1$ or $x^2 = 4$ so $x = 2$ or $x = -2$

(b)
$$8x^6 + 7x^3 - 1 = 0$$

 $8(x^3)^2 + 7x^3 - 1 = 0$
 $(8x^3 - 1)(x^3 + 1) = 0$
 $x^3 = -1$ or $x^3 = \frac{1}{8}$ so $x = -1$ or $x = \frac{1}{2}$
(c) $x + 10 = 7\sqrt{x}$
 $(\sqrt{x})^2 - 7\sqrt{x} + 10 = 0$
 $(\sqrt{x} - 5)(\sqrt{x} - 2) = 0$
 $\sqrt{x} = 5$ or $\sqrt{x} = 2$ so $x = 25$ or $x = 4$
2 $4\sqrt{x} + x = 3$
 $(\sqrt{x})^2 + 4\sqrt{x} - 3 = 0$
 $(\sqrt{x} + 2)^2 - 4 - 3 = 0$
 $(\sqrt{x} + 2)^2 - 4 - 3 = 0$
 $\sqrt{x} + 2 = \pm\sqrt{7}$
 $\sqrt{x} = -2 \pm\sqrt{7}$
so $\sqrt{x} = -2 + \sqrt{7}$ or $\sqrt{x} = -2 - \sqrt{7}$
 $x = (-2 + \sqrt{7})^2$
 $= 11 - 4\sqrt{7}$
 $a = 11, b = 4$
3 $f(x) = 0$
 $x^4 - 4x^2 - 5 = 0$
 $(x^2 - 5)(x^2 + 1) = 0$
 $x^2 = 5$ or $x^2 = -1$
 $x \in \mathbb{R}$, $x < 0$ so the only root is $x = -\sqrt{5}$