AQA

AQA Level 2 Certificate FURTHER MATHEMATICS

Level 2 (8360)
Mark Scheme
Worksheet 2
Geometric Problems and Proof

Our specification is published on our website (www.aqa.org.uk). We will let centres know in writing about any changes to the specification. We will also publish changes on our website. The definitive version of our specification will always be the one on our website, this may differ from printed versions.

You can get further copies of this Teacher Resource from:
The GCSE Mathematics Department
AQA
Devas Street
Manchester
M16 6EX

Or, you can download a copy from our All About Maths website (http://allaboutmaths.aqa.org.uk/).

Copyright © 2012 AQA and its licensors. All rights reserved.
AQA retains the copyright on all its publications, including the specifications. However, registered centres for AQA are permitted to copy material from this specification booklet for their own internal use.

AQA Education (AQA) is a registered charity (number 1073334) and a company limited by guarantee registered in England and Wales (number 3644723). Our registered address is AQA, Devas Street, Manchester M15 6EX.

Glossary for Mark Schemes

These examinations are marked in such a way as to award positive achievement wherever possible. Thus, for these papers, marks are awarded under various categories.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
M Dep A method mark dependent on a previous method mark being awarded.

BDep A mark that can only be awarded if a previous independent mark has been awarded.
ft Follow through marks. Marks awarded following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe Or equivalent. Accept answers that are equivalent.
eg, accept 0.5 as well as $\frac{1}{2}$

2. Geometric Problems and Proof

Question	Answer	Mark	Comments
1	Let angle $S Q R=x$ \therefore angle $R P Q=x$ alternate segment \therefore angle $R Q P=x$ isosceles triangle $\therefore \angle R Q S=\angle R Q P$	M1 M1 A1	Any order of angles SC2 'Correct' solution without reasons
2	Let angle $P S R=x=$ angle $Q R S$ $\therefore \angle S P Q=180-x$ Allied angles on parallel lines $\therefore \angle S P Q+\angle Q R S=180$ $P Q R S$ is a cyclic quadrilateral (converse of) opposite angles add up to 180°	M1 A1 A1	$\angle P Q R=180-x$ $\angle P S R+\angle P Q R=180$ SC2 'Correct' solution without reasons
3	$\begin{aligned} & p+r=180 \\ & 4 x+5 x=180 \\ & (9 x=180) \\ & x=20 \\ & 6 x=120 \\ & s=60 \end{aligned}$	M1 M1 A1 M1 A1 ft	oe ft Their x ft Their x

Question	Answer	Mark	Comments
4	$\angle B E D=x$ angles in same segment $\angle A E B=90^{\circ}$ $\text { angle in semicircle }=90^{\circ}$ In \triangle ACE $y+x+2 x+x+90=180$ angle sum of a triangle $=180$ $\begin{aligned} y+4 x & =180-90 \\ & =90 \end{aligned}$	M1 A1 A1 A1	SC2 'Correct' solution without reasons
5	$2 x+2 y=180$ opposite angles of a cyclic quadrilateral $=180$ $x+y=90$ $\therefore \angle Q P S=90$ angle sum of triangle $=180$ QS is diameter (converse of) angle in a semicircle = 90)	M1 A1 A1 A1	SC2 'Correct' solution without reasons
6	Let $\angle S X T=x$ $\therefore \angle S T X=x$ isosceles triangle $\therefore \angle S R T=x$ alternate segment \therefore triangle $R X T=$ is isosceles 2 base angles equal	M1 M1 A1	SC2 'Correct' solution without reasons

Question	Answer	Mark	Comments
7	$\angle O A B=x$ isosceles triangle	M1	
	$\begin{aligned} & \angle B O A=180-2 x \\ & \text { angle sum of triangle }=180 \end{aligned}$	M1	
	Reflex $B \hat{O} A=360-(180-2 x)$	M1	
	$($ Angles at a point $=360)=180+2 x$	A1	
	$y=90+x$	A1	SC3 'Correct' solution without reasons
	Angle at centre $=2 \times$ angle at circumference		

8	$\angle Q T P=x$ isosceles triangle	M1	
$\angle V T R=x$ vertically opposite angles	M1		
$\angle T Q P=x=\angle R S T$ exterior angle of cyclic quadrilateral $=$ opposite interior angle	M1	oe	
$\angle \angle V T R=\angle R S T$ $P V T$ is tangent (converse of) alternate segment theorem	A2	SC3 'Correct' solution without reasons	

9	$\angle E D B=x$ alternate segment $\therefore \angle D C A=x$ corresponding angles equal $\therefore \angle D A B=x$ alternate segment ie, $\angle D A B=\angle E B F$ $\therefore A D$ is parallel to $B E$ (converse of) corresponding angles equal	M1 M1 M1 A2	SC3 'Correct' solution without reasons

